Sunday, March 8, 2009

Three Intersecting Planes

The power of 3 - Sacred & spherical geometry


Everything in nature is made up of patterns, structures, designs from the smallest atom to the crystal of water to the stars. Each of nature's creations reveal to us the nature of that object and its own energetic vibration. Thus every creation has a unique vibratory frequency. The interaction of all the vibratory frequencies found in creation show us the intrinsic unity of the part to the whole.


3 intersecting planes used to create Icosahedron
We can build an Icosahedron by connecting the conners of the planes together to form 20 identical equilateral triangles as follows. Octahedron and the Icosahedron are related.

length of each plane is p=(1+sqrt(5))/2 while the width is 1.

"Pattern" knot can be formed around the Octahedron
The Pattern And The Octahedron (Start with the same 3 intersecting planes we used to construct the Icosahedron) We have seen how the pattern can be constructed from a tetrahedron. We divided the tetrahedron's edges in half which defined an octahedron inside the tetrahedron.

Star tetrahedron is significant because it is one of the shapes that energetic interdimensional vehicles, known as the ‘Merkaba’ or ‘Light-body’

Linking The Great Pyramid to the Human Form
studying the image generating properties of reflective spheres stacked in 52 degree angle pyramids. The 52 (51.827) degree angle slope of the sides of The Great Pyramid in Cairo, Egypt embodies the Golden Mean which is the ratio that is used in Nature to generate growth patterns in space.
The Vesica Piscis is one of the most fundamental geometrical forms of this ancient discipline and it reveals the relationship between the The Great Pyramid and the 2 dimensional expansion of a circle of one unit radius R


a camera mounted inside :



for u math :geek:
Hyperdimensional Physics -hyperdimensional physics based upon angular momentum -- the mass of an object and the rate at which it spins -- but an orbital momentum connected to four-space, and simultaneously affected by the planets’ satellites"

The angular momentum creates interesting effect 19.5 throughout the solar system
19.5 degrees north and south are the latitudes where the apex points of a star tetrahedra within a sphere will contact that sphere's surface, when one apex is positioned at the north or south pole. "Planet Earth’s 19.5-degree latitude we have the intersection between the light body of the planet with its surface, and since light-bodies have the ability to connect us to other dimensions, at this latitude we have an energetic predisposition for inter-dimensional experience"


Spherical Geometry & 19.5 Degrees Around the Solar System
Sun sunspot activity / peak temperatures is limited to 19.5 degrees north and south.
Mauna Loa, Hawaii
Mauna-Kea largest shield volcano
Mayan ruins in the Yucatan of Mexico sit on the 19.5 line
Pyramid of the Sun at Teotihuacan is at 19.6 degrees north
Mount Emi Koussi, Chad, Africa
Yasur Volcano, Tanna Island,
Vanuatu Oak Island stone triangle @ 19.5
hurricanes form on Earth at 19.5ยบ latitude
Moon Lunar Ruins on the Moon -- at 19.5
Mars Cydonia sits astride the 19.5-degree latitude on Mars (Richard Hoagland, a former NASA scientist) Olympus Mons shield cone volcano is at 19.5 degrees.
Venus 2 volcanos -Alpha and Beta Regio
Jupiter Red Spot "eye" & Moon
Saturn dark cloud bands
Neptune - dark spot 1986 Voyager II discovered a similar spot at 19.5 degrees north. ... grees.html

Why the Great (3) Pyramids ?

Ancient Wisdom and Truthful Knowledge Part 1 of 14
"Ancient Strucutures and their locations that were perfected by the Ancients" ... re=related

The closer to the galactic equator we become the more active these will become . ... re_archive

Recommended Books :


Imagining the 10th Dimension Part 1 of 2

Dreams in the Witch-House: Masters of Horror * L.R.Hubbard remake ... hhouse.htm

This movie is about 3 intersecting lines that come together in a room that Walter rents to write his thesis on quantum physics


for bigger image - * worth looking @ at the background scribbles on the wall ... use_02.jpg

Walter Gilman came to Miskatonic to study "non-Euclidean calculus and quantum physics" ... itch_House

Stuart Gordon (Re-Animator, From Beyond) tackles the work of H.P. Lovecraft again for his episode of Showtime's Masters of Horror series, Dreams in the Witch-House. Ezra Godden, who starred in Gordon's Dagon, plays Walter, a grad student who, naturally, rents a room at a creepy old house. Bad signs abound, from the reclusive downstairs neighbor, Masurewicz (Campbell Lane), to the gruff, mean-spirited landlord, Dombrowski (Jay Brazeau). The room itself is kind of a hole. Then there's all that mysterious late-night pounding and chanting. But, hey, the rent's cheap. One night, Walter is awakened by screaming, and runs next door to find his attractive neighbor, Frances (Chelah Horsdal), and her little boy, Danny (David and Nicholas Racz), being terrorized by a large rat, which runs into a hole in the wall. When Walter goes to complain to the uncaring landlord, crazy old Masurewicz asks him if the rat had a human face! Things get even stranger. He has vivid dreams of a witch visiting him and seducing him, but the dreams leave real physical evidence behind. Walter, who is studying string theory, begins to suspect that there is a portal to another dimension within the building. Maybe old Masurewicz isn't so crazy after all. He seems to know all about the witch, and urges Walter to get out while he still can. But Walter suspects that the witch (with help from her familiar, that ugly rat), is after Danny's innocent blood, and, having developed a romantic attraction to Frances, he's determined to keep her and the boy safe.....

What he initially assumes are dreams leave increasingly visible effects on his waking life, from finding a bloody pentagram scratched into his back to waking up in the rare books room of the school library, reading the Necronomicon (the Book of the Dead) in his underwear.

~ Josh Ralske, All Movie Guide ... tv-episode

Dreams in the WitchHouse by H. P. Lovecraft
Written January through Febuary of 1932

"Toward the end of March he began to pick up in his mathematics, though the other stndies bothered him increasingly. He was getting an intuitive knack for solving Riemannian equations, and astonished Professor Upham by his comprehension of fourth-dimensional and other problems which had floored all the rest of the class. One afternoon there was a discussion of possible freakish curvatures in space, and of theoretical points of approach or even contact between our part of the cosmos and various other regions as distant as the farthest stars or the transgalactic gulfs themselves - or even as fabulously remote as the tentatively conceivable cosmic units beyond the whole Einsteinian space-time continuum. Gilman's handling of this theme filled everyone with admiration, even though some of his hypothetical illustrations caused an increase in the always plentiful gossip about his nervous and solitary eccentricity. What made the students shake their heads was his sober theory that a man might - given mathematical knowledge admittedly beyond all likelihood of human acquirement - step deliberately from the earth to any other celestial body which might lie at one of an infinity of specifc points in the cosmic pattern.

Such a step, he said, would require only two stages; first, a passage out of the three-dimensional sphere we know, and second, a passage back to the three-dimensional sphere at another point, perhaps one of infinite remoteness. That this could be accomplished without loss of life was in many cases conceivable. Any being from any part of three-dimensional space could probably survive in the fourth dimension; and its survival of the second stage would depend upon what alien part of three-dimensional space it might select for its re-entry. Denizens of some planets might be able to live on certain others - even planets belonging to other galaxies, or to similar dimensional phases of other space-time continua - though of course there must be vast numbers of mutually uninhabitable even though mathematically juxtaposed bodies or zones of space.

It was also possible that the inhabitants of a given dimensional realm could survive entry to many unknown and incomprehensible realms of additional or indefinitely multiplied dimensions - be they within or outside the given space-time continuum - and that the converse would be likewise true. This was a matter for speculation, though one could be fairly certain that the type of mutation involved in a passage from any given dimensional plane to the next higher one would not be destructive of biological integrity as we understand it. Gilman could not be very clear about his reasons for this last assumption, but his haziness here was more than overbalanced by his clearness on other complex points. Professor Upham especially liked his demonstration of the kinship of higher mathematics to certain phases of magical lore transmitted down the ages from an ineffable antiquity - human or pre-human - whose knowledge of the cosmos and its laws was greater than ours"

No comments: